
Re-engineering LegacyRe-engineering Legacy
Mission Scientific SoftwareMission Scientific Software

Charles D. NortonCharles D. Norton
NASA Jet Propulsion LaboratoryNASA Jet Propulsion Laboratory

High Performance Computing Systems GroupHigh Performance Computing Systems Group
Observational Systems Division andObservational Systems Division and
Center for Space Mission Information and Software SystemsCenter for Space Mission Information and Software Systems

Viktor K. DecykViktor K. Decyk
UCLA Department of Physics and Astronomy andUCLA Department of Physics and Astronomy and
NASA Jet Propulsion LaboratoryNASA Jet Propulsion Laboratory
High Performance Computing Systems GroupHigh Performance Computing Systems Group

Observational Systems DivisionObservational Systems Division

Modernizing Scientific SoftwareModernizing Scientific Software

! Legacy Software Has Value
– Generally well debugged with correct and trusted results

– Actively used meeting end-user goals

! Legacy Software Has Limitations
– Difficult to extend, modify, and support collaborative

development

! Rewriting Software Has Additional Costs
– Developing new verification/validation tests can be expensive

! Abandon Legacy Code or Modernize It?
– If functionality is sound, legacy code can be wrapped in a

modern interface where original code is mostly unmodified

Modernizing Scientific SoftwareModernizing Scientific Software

! CSMISS SET Activity
– Develop an incremental approach to

re-engineer legacy systems

– Examine how our methodology may
benefit various JPL mission software
projects

– Demonstrate this for MACOS optical
analysis software important to many
NASA projects (D. Redding (385))

! Current Results
– Methodology successfully applied & delivered to MACOS project

– Meetings with JPL projects including future work involving the
Navigation and Flight Mechanics Section

Next Generation Space Telescope

NASA Origin’s program
NASA/GSFC/JPL

Software Re-engineering Benefits Optics
Modeling for Mission Critical Projects

MACOS MACOS OverviewOverview

! Modeling and Analysis for Controlled
Optical Systems (MACOS/SMACOS)
– Developed by David Redding, and others,

from Optical Systems Modeling Group (385)

– Provides powerful optical analysis tools and
a unique capability for system-level design
tasks

! Short List of Features
– Modeling optics on dynamic structures,

deformable optics, and controlled optics

– Efficient general ray-trace capabilities

– Integrated support with other tools to create
an end-to-end instrument system model

Modeling and Analysis of Controlled
Optical Systems (MACOS) Program

MACOSMACOS Project Goals Project Goals

! Enhancement to benefit from modern software
engineering techniques

– New features of Fortran 90/95 standard

– Dynamic memory

– Problem domain based design

– Reorganization to promote collaborative
development

Protect existing investment in software development
and efficiency while benefiting from increased safety,

organization, and extensibility

TechnologyTechnology

! Fortran 90/95 Features Modernize Programming

Fortran 90 Programming. Ellis, Philips, & Lahey; Addison Wesley, 1994

http://www.cs.rpi.edu/~szymansk/oof90.html

FOR MORE INFO...

Modules
Encapsulate data and routines
across program units

Use-Association
Controls access to module
content

Interfaces
Verifies argument types in
procedure calls

Derived Types
User-defined types supporting
abstractions in programming

Array Syntax
Simplifies whole array, and
array subset, operations

Pointers/Allocatable Arrays
Supports flexible/dynamic data
structures

Backward compatible with Fortran 77

TechnologyTechnology

! Preserve existing software, yet transform
for new development
– Create wrapper/interface layer to original code

– Support abstraction-based programming via
interfaces

– Gradual/selective replacement of data structures

! Benefits
– Software remains in use during modification

! Not automatic, but largely mechanical...
– Automation projects, with limited capabilities,

underway

Important as more ambitious codes are developed and maintained

Object/Abstraction Layer

Wrapper/Interface Layer

Modernization ProcessModernization Process

! Efficient interaction among MACOS, interfaces,
abstraction layer, and user I/O

Allows safe interaction with a legacy code

Legacy
MACOS
Software

User
I/O

On-going
Software

Development
and Support

Modernization ProcessModernization Process

Modernized Versions

Legacy Software
Standard-Based

Compilation

Standard Compliant
Legacy Software

Common Blocks

Implicit Variables

Include Statements

Etc...

Undesirable Features

Argument Checking

Wrappers to Preserve
Legacy Code

Etc...

Create InterfacesAdd New Capabilities

Dynamic Memory

Interoperability with
Other Software

Etc...

Components and OO

Group Related
Abstractions

Integrate with Larger
Projects

Stages can vary based on original design of legacy software

Addressing Undesirable FeaturesAddressing Undesirable Features

! Original COMMON Block in file
common.inc

real arg1(10,10), arg2(10,10)

logical arg3

integer arg4

COMMON /BLOCK1/ arg1, arg2, arg3, arg4

SAVE /BLOCK1/

subroutine foo()

include ‘common.inc’

...

end subroutine

! Common Blocks
– Inhibit dynamic memory, exposure discourages code sharing,

modification causes inadvertent errors

! Modernized version in common.f90

MODULE common_block1

implicit none

save

real, dimension(10,10) :: arg1, arg2

logical :: arg3

integer :: arg4

END MODULE common_block1

subroutine foo()

use common_block1

...

end subroutine foo

Conversion to modules is straightforward and brings many benefits...

Building Standard WrappersBuilding Standard Wrappers

! Interfaces
– Simplifies argument lists

– Performs argument checks

– Supports wrappers
preserving legacy code

! Interface Module

MODULE interface_module

use common_block1

implicit none

save

interface

subroutine foof77(arg1, arg2, dim1)

real, arg1(dim1, dim1)

integer :: dim1

logical :: arg2

end subroutine

end interface

CONTAINS

subroutine foof90(arg1, arg2)

real, dimension(:,:) :: arg1

logical :: arg2

call foof77(arg1, arg2, size(arg1,1))

end subroutine foof90

END MODULE interface_module

! A simple example, but significant
for complex procedures

! Modernized features can be applied
at the interface/wrapper level

Building Standard WrappersBuilding Standard Wrappers

! Dynamic Memory ! New Module for COMMON data with
Dynamic Memory and Constructor
Support

MODULE elt_common

implicit none

save

integer :: nElt, mdttl = 128

integer, allocatable :: RayID(:,:)

CONTAINS

! Constructor

subroutine new_elt_common()

allocate(RayID(mdttl, mdttl))

end subroutine new_elt_common

END MODULE elt_common

! Dynamic Allocation from Main Program

PROGRAM example

use elt_common

implicit none

call new_elt_common()

...

END PROGRAM example

! Legacy F77 include of COMMON data

parameter (mdttl=128)

integer nElt, RayID(mdttl, mdttl)

COMMON /EltInt/ nElt, RayID,...

SAVE /EltInt/

! Direct conversion of static data to
dynamic data

Building Standard WrappersBuilding Standard Wrappers

! Object-Oriented Design
! Encapsulation for Object-Design

MODULE plasma_class

type species

real, dimension(:,:), pointer :: coords

real :: charge_to_mass, kinetic_energy

end type species

CONTAINS

! Using a legacy routine via an OO Wrapper

subroutine w_push(particles, force, dt)

type (species) :: particles

real, dimension(:) :: force

real :: dt, qbm, wke

integer :: ndim, nparticles, nx

ndim = size(particles%coords,2)

nx = size(force)

qbm = particles%charge_to_mass

wke = particles%kinetic_energy

call push(particles%coords, force, &

qbm, wke, ndim, nparticles, &

nx, dt)

end subroutine w_push

END MODULE plasma_class

! Legacy routine is wrapped by a
simplified OO interface supporting
dynamic components

! Main program must call wrapper

Beam-Plasma Instability

Free Expansion

Tokamak Fusion Test Reactor (PPPL)

Impact on Impact on MACOSMACOS

! Improved Functionality
– System supports dynamic memory

– Long-lasting subtle bugs corrected

– More simple interfaces

– Supports standardized language features

Modernization ExperiencesModernization Experiences

! Legacy Code Characteristics
– ~67,200 lines of Fortran 77

– Distributed across ~60 files

– Must interact with MATLAB and FFTW

– ~765 Procedures

! Modernized Code Characteristics
– ~3,500 additional lines of Fortran 90 (mainly interfaces)

• 10 new modules, 28 required legacy interfaces, ~540 use statements replaced
common block includes

– .5 work year effort without participation of original authors
• 2-3 times improvement expected when original authors participate

• Speed/Performance comparable to original

– The modernization process improved the code

Current Work DirectionsCurrent Work Directions

! Partial Automation
– Examine S/W tools for building

interfaces automatically

! Object-Oriented Interfaces
– Research how modernization process

can add object-oriented concepts to
legacy software

! Software Integration with NGST
– Moving modernized code into executive software that

remotely drives the optical testbed hardware at GSFC

! Define Software Architecture
– Separate GUI from physics

– Extend concepts to other languages

Current Work DirectionsCurrent Work Directions

! Optical Systems Modeling Group
– Integration of new MACOS software

with executive code to drive GSFC
optical testbed remotely from JPL

Current Work DirectionsCurrent Work Directions

! Navigation Software
Development Group
– Support over 6 MLOC in

Fortran 77 and C

– Require migration to F90/95
since F77 will be discontinued
on current platform

– Must support current, and
new, missions without
abandoning existing work

– Cannot afford delays in
schedule, but new
development must continue

– Successfully applied this
process to parts of their code

Benefits of Re-engineering MethodologyBenefits of Re-engineering Methodology

! Legacy codes still have value, but extending that
functionality has become more important

! Modern codes require...
– Greater complexity and multiple authors

– Dynamic features and flexible design

! Build modern superstructure while code remains in use
– Data abstraction and information hiding are key to limiting exposure of

unnecessary details

– Modern language features reduce inadvertent errors

! Wrappers can extend functionality
– Verify preconditions, measure performance, etc...

More InformationMore Information

! On the Web...
– http://hpc.jpl.nasa.gov/PEP/nortonc/csmiss.html

• White Papers, FY 2000 Final Report, etc...

! Acknowledgment
– Center for Space Mission Information and

Software Systems

– Observational Systems Division
• High Performance Computing Group

• Optical Systems Modeling Group

– Navigation and Mission Design Section
• Navigation Software Group

